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Abbreviations: 
AD, Alzheimer’s disease 
ADNI, Alzheimer's Disease Neuroimaging Initiative 
aHD, averaged Hausdorff Distance 
CN, cognitively normal 
CNN, convolutional neural network 
CPU, central processing unit 
DICE, dice coefficient 
DKT, Desikan-Killiany-Tourville 
ECB, error corrective boosting 
FOV, field of view 
GARD, Gwangju Alzheimer’s & Related Dementia 
GM, gray matter 
GPU, graphics processing unit 
HD, Hausdorff distance 
ICC, intra-class correlation coefficient 
MRI, magnetic resonance imaging  
OA, old age 
OASIS, Open Access Series of Imaging Studies 
PD, Parkinson’s disease 
ROI, region of interest 
SALD, Southwest University Adult Lifespan Dataset 
TE, time of echo 
TFU, Tohoku Fukushi University 
TI, time of inversion 
TR, time of repetition 
WM, white matter 
YA, young age  
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Abstract 
Accurate parcellation of cortical regions is crucial for distinguishing morphometric 
changes in aged brains, particularly in degenerative brain diseases. Normal aging and 
neurodegeneration precipitate brain structural changes, leading to distinct tissue contrast 
and shape in people aged > 60 years. Manual parcellation by trained radiologists can 
yield a highly accurate outline of the brain; however, analyzing large datasets is 
laborious and expensive. Alternatively, newly-developed computational models can 
quickly and accurately conduct brain parcellation, although thus far only for the brains 
of Caucasian individuals. DeepParcellation, our novel deep learning model for 3D 
magnetic resonance imaging (MRI) parcellation, was trained on 5,035 brains of older 
East Asians (Gwangju Alzheimer’s & Related Dementia) and 2,535 brains of 
Caucasians. We trained full 3D models for N-way individual regions of interest using 
memory reduction techniques. Our method showed the highest similarity and robust 
reliability among age-ethnicity groups, especially when parcellating the brains of older 
East Asians. 
 
Keywords: Deep learning, brain, 3D magnetic resonance imaging, DeepParcellation, 
parcellation  
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1. Introduction  
Population growth, in association with aging, is a driving force for the increasing 
incidence of neurodegenerative diseases. Brain aging is reflected in structural changes 
and functional decline of the brain [1]. Estimating the brain’s biological age and 
monitoring the progression of age-related diseases [2] demand accurate brain 
parcellation methods. However, earlier parcellation methods have overlooked aging 
morphology and ethnic differences, raising several concerns. 
 The first concern is that the brains of people aged > 60 years show robustly 
different region-specific patterns compared with those of younger individuals (20s–
40s). For instance, the contrast between gray matter (GM) and white matter (WM) is 
usually higher in younger brains than in older brains because of changes in the amount 
of water in GM and WM tissues driven by myelin structural changes [3]. Subcortical 
structures show heterogeneous T1 and T2* values across regions due to changes in the 
composition of myelin and iron [4]. Abnormal volume and shape changes in the brain of 
older persons are observed as ventricular enlargement [5], WM hyperintensities [6], 
WM/GM atrophy [7], and heterogeneous subcortical brain volumes [4]. 
 The second concern is that brain volume and shape differ between East Asians 
and Caucasians [8]. Brains οf Japanese individuals, for example, show morphological 
differences in the inferior parietal lobes, occipital regions, and posterior temporal 
regions compared with those of Europeans. The overall notion is that the brains of 
Japanese participants are shorter and wider than those of European participants [9]. A 
recent study validated the interethnic differences in cortical volume, cortical thickness, 
cortical surface area, and GM intensities [10], and reported that the brains of Chinese 
participants showed larger structural aspects in the temporal lobe and cingulate gyrus, 
but smaller ones in the parietal and frontal lobes than the brains of Caucasian 
individuals. 
 The final concern is related to computation time. There is a growing interest in 
collecting and studying brain magnetic resonance imaging (MRI) cohort data of East 
Asian individuals [11]. A fast and reliable segmentation method is critical for such 
studies because conventional methods require long computation times to improve 
accuracy [12]. This can take many hours per brain, depending on computing power or 
algorithm complexity. Although recent advances have reduced the computation time, 
they are still not sufficient to handle big cohort data. To overcome these performance 
issues, deep learning approaches have recently been considered as a suitable solution in 
the neuroimaging field [13–18]. However, these models may not be directly applicable 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487283doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487283
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

to brain parcellation of older East Asian individuals in terms of their runtime and 
accuracy, as they are based on brains of Caucasian individuals. 
 Deep learning models for brain segmentation and parcellation usually suffer 
from a tradeoff between the image dimensions and memory requirements. Based on 
image dimensions, models can be divided into four categories: 2D, 2.5D, partial 3D, 
and full 3D models. 2D models are the simplest, whereby only a single slice is 
segmented [13]. They lose 3D contexts orthogonal to the selected plane and do not 
provide an aggregated 3D view of the parcellated regions of interest (ROIs). In contrast, 
2.5D models attempt to reconstruct a 3D view from slice-wise segmentations [19]. This 
strategy could reduce some inconsistencies between slices by considering adjacent 
contexts. However, the aggregation could still create artifacts at random positions, 
degrading the overall accuracy [19]. Partial 3D models are the most common and use 
partial 3D images/patches derived from the whole image either by sub- or down-
sampling. Partial 3D-based models can usually observe local 3D contexts, producing 
better parcellation for a certain area, while losing some global contexts [14, 17, 18]. A 
notable exception to this limitation is a cascaded model that can capture both global and 
local contexts by using down-sampled and cropped images of the original resolution. 
However, this strategy is not capable of handling ROIs of varying sizes. Full 3D models 
can capture 3D contexts, intrinsically reducing inconsistency between slices and, in 
turn, potentially yielding high accuracy [15, 16]. However, the memory requirements 
become intractable, owing to the required increases in model parameters. 
 ROI number and size usually govern a model’s performance, mainly due to 
class imbalance. A model may predict a few ROIs of larger volumes with higher 
accuracy and shorter computing time than those segmenting several smaller ROIs. A 
few early models focused only on a single ROI, such as the hippocampus [17]. Next-tier 
models can parcellate three representative tissues, including GM, WM, and 
cerebrospinal fluid [20], while finer-grained models collocate ROI predictions in the left 
and right cerebral hemispheres. Of particular interest is SkipDeconv-Net (SD-Net) [15], 
which adopted UNet [21] and DeconvNet [15]. The SD-Net author introduced error 
corrective boosting (ECB), which updates high weights for classes with low accuracy 
per epoch, giving increased attention to those classes. However, ECB was applied only 
to the weighted cross-entropy and not to dice loss. A pioneering model handling > 50 
ROIs, which can segment MR slices into 56 classes using a 2D convolutional neural 
network (CNN), was introduced in 2011 [13]. Some groups claimed to have 
successfully created a model that can parcellate > 90 ROIs [18, 19]. NeuroNet was 
trained on large-scale samples (N = 5,723) from the UK Biobank imaging study, and 
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used three different segmentation tools, FSL, SPM, and MALP-EM, to generate label 
maps from T1-weighted images [16]. However, there are some limitations to NeuroNet, 
such as the image dimensions of 128 × 128 × 128 and the difficulty to improve the low 
accuracy of some ROIs unless training is performed with weighted losses. Recently, 
FastSurferCNN achieved state-of-the-art performance in the parcellation of 95 ROIs 
using the 2.5D UNet with competitive dense blocks [19]. Notably, only a few models 
were trained and tested on > 500 subjects in which the number of subjects is a very 
important factor in testing the reliability and validity of a given model [16, 18, 19]. A 
summary of the other available models is provided in Tables A.1-A.4. 
 Accurate brain segmentation and parcellation are necessary for acquiring 
precise quantitative values of brain regions, including volume and cortical thickness[8, 
22, 23]. These measurements have been used for brain age prediction [1] and as 
biomarkers for neurodegenerative diseases including Parkinson’s disease (PD) [24] and 
Alzheimer’s disease (AD) [25]. 
 In this study, we propose a novel 3D deep learning model, DeepParcellation, 
focusing on the brains of older East Asian individuals, which can parcellate 109 ROIs 
based on the Desikan-Killiany-Tourville (DKT) atlas. Our model employs 3D UNet 
architectures combined with inception blocks, dilated convolutions, and attention gates. 
The proposed model was robustly evaluated in (1) similarity of parcellated regions 
using dice coefficient (DICE), averaged Hausdorff Distance (aHD), (2) intra-subject 
reliability using the intra-class correlation coefficient (ICC), and (3) between-group 
variability between cognitively normal (CN) people and patients with AD.  
 
2. Materials and methods 
All participants provided informed consent in accordance with the institutional review 
board of Chosun University Hospital, Republic of Korea. 
 
2.1. Experimental Design 
The primary aim of the study was to provide robust brain features for downstream 
analyses in studies of neurodegenerative diseases, aging, and biomarkers for monitoring 
patients in follow-ups. To enable support for unlimited number of ROIs, we introduced 
the N-way-weight strategy. Following the divide-and-conquer concept, we performed 
individual training for each ROI, avoiding competition during training so that ROI 
weights are independent. In addition, we integrated three memory reduction techniques 
to overcome a limitation in computational resources while retaining the full 3D 
characteristics: inception blocks, dilated convolutions, and attention gates. 
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 To evaluate model performance, we collected brain MRI data of people of East 
Asian and Caucasian origins. We focused on similarity and robustness measures by 
which the accuracy and robustness of the downstream analyses could be improved. 
 
2.2. Model background 
UNet was initially developed for segmenting 2D biomedical images [21]. UNet follows 
an encoder–decoder structure for unsupervised learning, where the encoder (contracting 
path) captures global contexts, while the decoder (expanding path) performs detailed 
localizations. Skip connections in the expanding path combine contextual information 
and spatial locations. 
 A deep learning model can improve accuracy through a deeper or wider 
network structure. However, these structural changes lead to an increase in model 
capacity, causing overfitting and gradient vanishing problems. The Inception (or 
GoogLeNet) block mitigates these problems by introducing 1 × 1 or 1 × 1 × 1 
convolution blocks, which reduce the number of feature maps while increasing depth 
[32]. 
 In a convolutional layer, the kernel size determines the receptive field area, 
which represents the feature size. Multi-scale kernels can improve model performance, 
but also increase the number of parameters. Dilated convolution was introduced to 
enable larger receptive fields while maintaining the same number of parameters [33]. 
For instance, for a CNN with a kernel of size 3 × 3 and a dilation rate of 2, the receptive 
field becomes 5 × 5 while keeping the number of parameters to nine because every 
second row and column of the field will be skipped. 
 Attention is a mechanism that focuses more on features relevant to the target 
than on those less relevant [34]. Soft attention keeps attention on the global context, 
while hard attention observes a partial context, such as patches of an input. Soft 
attention can be implemented as a skip connection in UNet [35]. 

We developed DeepParcellation using N-way multiple 3D UNet architectures 
combined with inception blocks, dilated convolutions, and attention gates (Fig. 1) 
 
2.3. Datasets 
2.3.1. East Asian old age (OA) dataset 
MR images of 5,035 older Koreans, aged > 50 years, were collected from the Gwangju 
Alzheimer’s & Related Dementia (GARD) dataset (Table 1). GARD data were divided 
into 4,028, 503, and 504 subjects for training, validation, and test sets, respectively 
(Table A.6). MRI data were acquired using 3.0 T (Skyra, Siemens, Munich, Germany) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487283doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487283
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

scanners. T1-MPRAGE sequences were acquired with the following parameters: 
repetition time (TR) = 2,300 ms, echo time (TE) = 2.14 ms, inversion time (TI) = 900 
ms, field of view (FOV) = 256 × 256, and voxel size = 0.8 × 0.8 × 0.8 mm3. T2-SPACE 
sequence was acquired with the following parameters: TR = 2,300 ms, TE = 2.143 ms, 
TI = 900 ms, FOV = 256 × 256, and voxel size = 0.8 × 0.8 × 0.8 mm3. 
 We used MR images of 116 Chinese individuals aged > 60 years from the 
Southwest University Adult Lifespan Dataset (SALD) only for model evaluation. 
Details of the MRI protocol are described in the study by Wei et al. [27]. 

 
2.3.2. East Asian young age (YA) dataset 
MR images of 140 young Japanese individuals (mean age: 19.05, 18–22 years) were 
collected from the Tohoku Fukushi University (TFU) dataset [36]. TFU MRI data were 
acquired using 3.0 T (Skyra, Siemens) scanners. T1-MPRAGE sequences were acquired 
with the following parameters: TR = 1,900 ms, TE = 2.52 ms, TI = 900 ms, FOV = 256 
× 256, and voxel size = 1 × 1 × 1 mm3. 
 MR images of 154 young Chinese individuals < 30 years from the SALD were 
used for model evaluation. 
 
2.3.3. Caucasian OA dataset 
MR images of 75 older Caucasians, aged > 60 years, were collected from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Details of the dataset are 
described on the ADNI website (http://adni.loni.usc.edu). 
 MR images of 149 older Caucasians, aged > 60 years, were collected from the 
Open Access Series of Imaging Studies (OASIS) dataset. Details of the dataset are 
described on the OASIS website (https://www.oasis-brains.org). 
 
2.3.4. Caucasian YA dataset 
MR images of 107 young Caucasians < 30 years were collected from the OASIS 
dataset. Details of the dataset are described on the OASIS website (https://www.oasis-
brains.org). 
 
2.3.5. Intra-subject reliability dataset 
To evaluate intra-subject reliability among ethnicities, we used three young Japanese 
subjects with six repeated acquisitions [36] and three Caucasian subjects with 40-times 
repeated acquisition within 31 days [37]. 
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2.4. Preparation for model training 
The labeled images were reconstructed using T1 and T2 images to reduce topological 
mismatches when T2 images were available. To run the recon-all command with the T2 
argument, T2-SPACE images were spatially registered to the T1 space. We adopted the 
rigid-body registration strategy to minimize registration errors, because T1-MPRAGE 
and T2-SPACE were acquired from the same scanner. The registered T2-SPACE and 
T1-MPRAGE images were used as inputs for running the FreeSurfer recon-all 
procedure with the following commands: 
“recon-all -autorecon1 -i [path_to_input_T1] -T2 [path_to_aligned_T2] -T2pial -sd 
[output_dir] -s [subject_id]” 
“recon-all -autorecon2 -T2 [path_to_aligned_T2] -sd [output_dir] -s [subject_id]” 
“recon-all -autorecon3 -T2 [path_to_aligned_T2] -T2pial -sd [output_dir] -s 
[subject_id]” 
 
2.5. Model training 
We did not perform any data augmentation, which is very common for studies with a 
limited number of samples. We initially pre-trained 112 independent ROIs defined in 
automatic cortical parcellation and automatic segmentation volume with different 
numbers of rounds consisting of multiple epochs using Keras [38] packages, mainly 
using six Tesla V-100 GPUs (graphics processing units) with 16 GB memory, and 
partially using six Tesla A-40 with 48 GB memory. Then, we performed transfer 
learning on 101 ROIs defined in the DKT atlas. Transfer learning is a learning strategy 
that reuses parts (or the whole) of the knowledge gained in previous tasks on a different 
but related task. Each epoch took approximately 1 h for 5,392 MRIs of a single ROI, 
and the model was trained for 121 days. The loss function improved curves near 
segmentation boundaries by using the DICE [39], voxel classification accuracy by 
assigning more weights to ROI masks according to class frequency between background 
and ROI voxels, and by using binary cross-entropy. We minimized the combined loss of 
binary cross-entropy and DICE using the Adam optimizer [40]. The learning rate was 
fixed to 0.0001, and the seed for the random number generator and optimizer weights 
were reset per round to overcome the local minima problem. Details of the training 
epoch information are shown in Fig. A.1. 
 
2.6. Aggregation of individual predictions 
All N-ROI masks predicted by DeepParcellation require an aggregation step, which 
provides an integrated view of individual probability maps. A single predicted result 
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represents a probability map of the ROI voxels after passing the input to the sigmoid 
function. Because all probability maps share identical dimensions, we can determine the 
most likely classes of every voxel in 3D coordinates. Given input ROIs, x, we calculate 
the final probability map using the softmax function (σ) as follows: 
 

𝜎𝜎�𝑥𝑥𝑗𝑗� = 𝑒𝑒𝑥𝑥𝑥𝑥

∑ 𝑒𝑒𝑥𝑥𝑘𝑘𝑘𝑘
    (1) 

where, input probability vector 𝑥𝑥 = {𝑥𝑥0,  𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1}, and k is the number of ROIs. 
 
2.7. Statistical Analysis 
2.7.1. Similarity 
DICE is a metric for evaluating segmentation accuracy. Given a binary mask of ground 
truth T and prediction P (voxels of the given class marked with 1 and background with 
0), the DICE is defined as follows: 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑇𝑇,𝑃𝑃) =  2𝑇𝑇∩𝑃𝑃
𝑇𝑇+𝑃𝑃

    (2) 

 
The highest value for DICE is 1, which represents a situation when T and P are 
perfectly matched. DICE is a widely accepted metric because it allows direct 
observation of the similarity between T and P. However, DICE may not capture the 
variability in fundi of different sulci (or simply the curvature) around ROIs’ boundaries. 
 Yet another metric, the Hausdorff distance (HD), can be used to measure how 
far two surfaces are from each other, bridging the gap in DICE. Given ground truth G 
and segmentation S, the HD is defined as follows: 

 

𝐻𝐻𝐷𝐷(𝑆𝑆,𝐺𝐺) = max �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∈𝑆𝑆 𝑑𝑑(𝑠𝑠,𝐺𝐺), 𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔∈𝐺𝐺 𝑑𝑑(𝑆𝑆,𝑔𝑔)�  (3) 

 
where sup represents the supremum or the greatest lower bound and is

( , ) inf ( , )
y Y

d x Y d x y
∈

=  the distance x S∈  from a point to the subset Y S⊆ . 

Alternatively, the supremum distance or directed HD can be denoted as follows: 
 

ℎ(𝐴𝐴,𝐵𝐵) =  𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚 ∈  𝐴𝐴 𝑏𝑏 ∈ 𝐵𝐵 ∥ 𝑚𝑚 − 𝑏𝑏 ∥   (4) 
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where, norm (||) is the Euclidean distance. However, directed HD is prone to being 
affected by noise and outliers; therefore, we could take the aHD. To calculate aHD, we 
replace distance as follows: 
 

ℎ(𝐴𝐴,𝐵𝐵) = 1
𝑁𝑁
∑ 𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝑚𝑚 − 𝑏𝑏 ∥𝑎𝑎∈𝐴𝐴    (5) 

 
Equivalently, we can use a simplified equation of aHD as follows: 
 

𝑚𝑚𝐻𝐻𝐷𝐷 =  
𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑑𝑑(𝑠𝑠,𝐺𝐺)+𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔∈𝐺𝐺𝑑𝑑(𝑆𝑆,𝑔𝑔)

2
   (6) 

 
 We calculated DICE, and aHD for the different age groups (OA and YA) of 
East Asians and Caucasians by comparing the predicted masks with the outputs of 
FreeSurfer (ground truth). 
 To clearly observe metric differences between our proposed model and another 
method, FreeSurfer, we calculated fold changes using the mean measurements of the 
other method as the baseline, and Cohen’s d. Given two groups, Cohen’s d is calculated 
as follows: 
 

d = 𝑀𝑀𝑀𝑀𝐴𝐴𝑁𝑁2−𝑀𝑀𝑀𝑀𝐴𝐴𝑁𝑁1
𝑆𝑆𝑆𝑆𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

    (7) 

𝑆𝑆𝐷𝐷𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 = �𝑆𝑆𝑇𝑇𝑆𝑆12−𝑆𝑆𝑇𝑇𝑆𝑆22

2
   (8) 

where, MEAN is the mean of a group and STD is a standard deviation of a group. 
 
2.7.2. Intra-subject reliability 
For test-retest reliability evaluation, we adopted ICC (2, k) with a two-way random-
effects model [41]. The definition of ICC (2, k) is that randomly selected k raters rate 
each target, and the reliability is estimated for the average of k ratings. Thus, we defined 
repeated measurements of the number of voxels as raters and subjects as targets. We 
calculated ICCs using the test-retest dataset for brain volume measurement, with 18 
MRI scans from three young Japanese subjects and 120 MRI scans from three young 
Caucasian subjects [37]. ICCs were calculated using the voxel count of each ROI mask 
given by FreeSurfer and the proposed model. 
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2.7.3. Between-group variability evaluation 
To evaluate the sensitivity to inter-group variations, we compared the normalized 
cortical volume of each ROI mask given by FreeSurfer and our model between East 
Asian CN and AD groups using the GARD dataset. The normalized volume was 
calculated by dividing the voxel number of individual ROIs by the total voxel counts of 
all parcellated regions. Independent t-tests and f-tests were conducted between groups. 
 
3. Results 

3.1. Similarity evaluation 
We calculated the DICEs by comparing the predicted ROIs of DeepParcellation and 
FastSurfer with the outputs of FreeSurfer version 7.1 as surrogates for the ground truth. 
FastSurfer was trained using FreeSurfer version 6.0, in a way that direct DICE 
comparisons between DeepParcellation and FastSurfer are infeasible. In this 
comparison, FreeSurfer version 7.1 outputs are likely to be unseen data from the 
FastSurfer model’s perspective; thus, the DICEs of FastSurfer serve as baselines for 
calculating fold changes. In the OA group, the mean DICEs for all 101 of 
DeepParcellation’s ROIs were higher than those of FastSurfer (Fig. 2A). Similarly, 
higher mean DICE values were observed with DeepParcellation, except for two ROIs 
(left and right superior temporals) in the YA group. Specifically, FastSurfer showed a 
higher fold change than DeepParcellation only in the right superior temporal ROI with a 
large Cohen’s d value (Fig. 2A). In the comparisons between ethnic groups, 
DeepParcellation showed higher similarities for all ROIs in the Asian group, while 
FastSurfer showed higher similarities for 74 out of 101 ROIs in the Caucasian group. 
With Cohen’s d criteria, DeepParcellation showed higher fold changes than FastSurfer 
except for three ROIs (left and right white matters and right superior temporal). We 
could not calculate the DICEs of six ROIs (CC_Posterior, CC_Anterior, 
CC_Mid_Posterior, CC_Mid_Anterior, CC_Central, and Optic-Chiasm) with FastSurfer 
because it did not produce ROI predictions with the default option. 
 
 We also compared the DICEs among different groups using only 
DeepParcellation predictions to observe the effects of age and ethnicity. The 
performance of DeepParcellation was superior on brains of East Asians to that in brains 
of Caucasian individuals, and on OA compared to YA datasets (Fig. 3A). Among all 
groups, the overall highest average DICE (0.85) was observed in the East Asian OA 
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group (one-way analysis of variance and post-hoc Tukey honestly significant difference, 
p < 0.001). In East Asians, the OA group showed a comparable number of brain regions 
with higher DICEs (43 out of 101 regions) to the YA group (Fig. 3A). The aHD of the 
East Asian OA group (0.28) was significantly lower than that of the East Asian YA 
group (0.30) (post-hoc, p < 0.001) (Fig. 3B) and Caucasian YA group (0.43) (post-hoc, 
p < 0.001). In addition, the aHD of the East Asian YA group (0.30) was significantly 
lower than that of the Caucasian YA group (0.43) (post-hoc, p < 0.001). 
 
3.2. Intra-subject reliability  
DeepParcellation showed a significantly higher average ICC (0.95) than that of 
FreeSurfer (0.91) in East Asians (Fig. 3B). There was no significant difference in 
DeepParcellation ICCs between East Asians and Caucasians (0.95 and 0.98, 
respectively), but significantly different FreeSurfer ICCs were observed between East 
Asians and Caucasians (0.91 and 0.99, respectively). 
 
3.3. Between-group variability  
In 61 out of 101 regions, DeepParcellation achieved higher statistical power of group 
differences between the CN and AD groups compared to FreeSurfer (Fig. 3C, and Fig. 
4). We selected nine highly ranked regions sorted by the difference in the negative 
logarithm of p-values between CN and AD groups: bilateral entorhinal cortex, bilateral 
amygdala, bilateral hippocampus, and bilateral inferior lateral ventricles (Fig. 4). 
 
3.4. Processing success rate of DeepParcellation and FreeSurfer 
We reported the success rate of DeepParcellation and FreeSurfer with default recon-all 
commands across different datasets (Table 2).  

DeepParcellation failed only in two subjects in the ADNI dataset and 
succeeded in all other subjects in the other datasets. On the other hand, FreeSurfer failed 
in some subjects in all datasets (41, 273, 41, 7, and 1 subject in the ADNI, OASIS, 
GARD, SALD, and TFU datasets, respectively). 
 Most subjects were successfully processed by both DeepParcellation and 
FreeSurfer (Fig. 2B, and Fig. A.3A), but showed relatively lower average DICEs. We 
found that lower DICEs in FreeSurfer were due to failures in parcellations and 
misannotations of several brain regions (Fig. 2C, and Supplementary Fig. A.3B). 
 
3.5. Runtime 
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We reported the runtime of DeepParcellation and FreeSurfer with the default recon-all 
command. DeepParcellation consistently performed full parcellation in about 2 min, at 
30 s per sample, using a single GPU. The runtime of DeepParcellation using CPUs 
(central processing units) depends on the CPU number, but it did not improve when it 
was higher than the ROI number. The runtime of FreeSurfer fluctuated, with a median 
time of approximately 13 h and 9 h using a single CPU and 24 CPUs, respectively 
(Table A.5). 
 
4. Discussion 
Herein, we proposed a novel full 3D deep learning model for automatic brain MRI 
parcellation that shows comparable or better performance in terms of similarity and 
reliability for the brain of older East Asian individuals than an existing model, 
FreeSurfer. Previous deep learning models have utilized several tens or hundreds of 
samples of brains belonging to Caucasian individuals [16, 18], as East Asian cohort 
datasets were not sufficiently established or not publicly available, with the exception of 
a few cases [26, 27]. These East Asian studies consisted of hundreds of subjects, but the 
sample size may not be sufficient to train a deep learning model for older East Asian 
individuals. In contrast, the sample size (GARD, N = 7,166) and age range (mean age: 
72.62, 35–100 years) of our study were suitable for implementing a deep learning model 
representing older East Asian individuals. 
 Our model was trained using the full 3D context. This forgoes the need for 
aggregating contexts of three orthogonal planes, meaning that the model may have a 
higher potential to achieve better accuracy. Our model was developed to overcome the 
intrinsic memory requirement problem of full 3D models by integrating parameter 
reduction techniques such as inception blocks, dilated convolution, attention gates, and 
weight splitting (N-way weights). The N-way weight strategy increases the time needed 
for training and prediction, but enables individual model refinement through transfer 
learning, and allows integration of heterogeneous models. In contrast, 2.5D models 
require training and prediction of three models for each image plane. They can utilize a 
mini-batch strategy with a batch size larger than that of a full 3D model, thereby 
improving runtime. However, 2D or 2.5D models may lose 3D contexts, which 
influences parcellation accuracy. 
 With a classical model predicting multiple ROIs (e.g., through cross-entropy), 
re-weighting is rarely possible due to increased competition while minimizing the loss 
of multiple ROIs, where non-linear interventions occur in the model parameter space. 
Thus, in such cases, one should start the training from scratch, although convergence 
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with the changed ROI configuration is not guaranteed. In contrast, competition during 
training never occurs with the N-way-weight strategy because weights are independent 
of each other. 
 The integration of models with heterogeneous structures is generally infeasible. 
We found that 3D UNet attains lower average DICEs for vessel parcellations, owing to 
geometrical uncertainty and randomness in shapes. With other network structures, such 
as partial 3D models, one may overcome uncertainty, but integration incurs re-designing 
and re-training of a classical model. In contrast, the N-way-weight strategy allows for 
individual model replacement; thus, it is possible to improve vessel parcellations 
without disturbing the probability map of other ROIs. 
 Most deep learning models for brain parcellation have been oriented towards 
Caucasian people [18]. As there are several differences in anatomy between brains of 
East Asian and Caucasian individuals, including shape and volume, our model can yield 
a better prediction, especially in the brains of older East Asian individuals, for the 
following reasons: 
 First, DeepParcellation showed robustly higher similarities in the East Asian 
OA group than in the other groups. That the highest DICE and lowest aHD were 
observed in the East Asian OA group indicates that our model is optimized for older 
East Asians. In the DICE evaluation, age-related dominant structural changes were 
observed in East Asians, although a similar number of regions showed higher DICEs 
between the OA and YA groups (Fig. A.1). The OA group showed higher DICEs in 
age-related brain regions such as the ventricles [5]; and WM hypointensities [6] 
compared to the YA group. Structural changes in these regions are closely associated 
with aging and neurodegenerative diseases, such as AD [28].  

Second, DeepParcellation showed higher intra-subject reliability than 
FreeSurfer. The higher ICC of our model (0.95 vs. 0.91) indicates that DeepParcellation 
consistently parcellates East Asian brains. Since our model learned a global distribution 
of East Asian brain patterns such as shape, intensity, contrast, and volume from several 
thousands of East Asian samples, the predictions of unseen data are superior to those of 
FreeSurfer. The non-significant difference in ICCs between DeepParcellation and 
FreeSurfer in brains of Caucasians supports the good generalizability of the model.  

Third, DeepParcellation showed better sensitivity to group differences in East 
Asians than did FreeSurfer. The higher statistical metrics displayed by our model were 
derived from significantly different mean values and variations of the normalized 
volume between cognitive groups (CN and AD). DeepParcellation was superior to 
FreeSurfer in terms of absolute Cohen’s d in selected regions (the bilateral entorhinal 
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cortex, bilateral amygdala, bilateral hippocampus, and bilateral inferior lateral 
ventricles) (Fig. 3C). These regions showed significant differences in mean values and 
variations in comparison to FreeSurfer (Fig. 4). The difference was more robustly 
observed in the CN group than in the AD group because our model training was 
performed on more East Asian CN samples. Of particular significance is the fact that 
the selected regions belong to the medial temporal lobe, which is highly associated with 
AD [29]. Volume changes in these regions have been used to develop biomarkers for 
AD diagnosis and cognitive decline [2]. 

Finally, DeepParcellation shows a high success rate for parcellation. Some 
MRI data can display an abnormal intensity distribution or shape beyond the normal 
range of their population. Using the default command (recon-all), FreeSurfer can fail to 
process such a brain image because of inhomogeneous intensity ranges or mismatched 
coordinates with respect to a standard template. Contrarily, our model learned 
geographic patterns and image properties of brain structures from thousands of samples, 
rather than performing a sequence of manual algorithms. DeepParcellation, therefore, 
increases the chances of making valid predictions for atypical brains where FreeSurfer 
could fail.  
 Our model has some limitations that should be overcome in further studies. 
First, we did not train the model with different MRI acquisition parameters from 
multiple vendors. Most data came from our in-house GARD dataset based on the same 
scanner and acquisition parameters; thus, our model may have lacked technical 
generalization. Although our model already showed good performance on brains of 
Caucasians from the ADNI and OASIS databases, we think that it would be better to 
create a specialized model for the brains of Caucasian individuals rather than pursuing 
generalization, considering the anatomical differences between brains of East Asians 
and Caucasians. Second, segmentation failures at ROI boundaries can more severely 
influence smaller ROIs, which is a class imbalance problem. We may reweigh the 
probability values by refining some problematic ROIs before passing them to the final 
softmax function. Alternatively, we could replace certain predictions with newer ones 
by introducing a heterogeneous network with higher accuracy than that of our base 3D 
Attention UNet model. 

Despite these limitations, DeepParcellation has great potential for use in 
neuroimaging studies. The predicted parcellation derived from our method can be 
extended to neurodevelopmental and clinical studies, such as brain age prediction or 
biomarker development for neurodegenerative diseases. Parcellated subcortical regions, 
including the putamen, caudate, and hippocampus, predict brain age with good accuracy 
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[30]. Decreased cortical thickness in temporal regions was found in patients with PD 
[24] and reduced volumes in cortical regions were reported in patients with AD [2]. 
Since aging affects certain brain regions differently [31], accurate and precise structural 
measurements are critical for monitoring neurodegenerative processes. Our robust and 
reliable parcellation method of the brain of older individuals can guarantee higher 
prediction accuracy and help disease diagnosis.  

The fast and robust parcellation achieved by our proposed model can accelerate 
big brain MRI data analysis. Our method provides crucial data for secondary 
applications, such as early detection or monitoring the progress of neurodegenerative 
diseases.  
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Figure captions 
Fig. 1. Description of DeepParcellation network architecture for a single region of 
interest. The network includes four inception blocks and three transpose blocks which 
consist of eight different layers. The second, third, and fourth inception blocks are 
connected to transpose blocks through attention gates. The last transpose block is 
activated through ReLU and Sigmoid function to predict parcellated brain image. 

 
Fig. 2. Performance of DeepParcellation. (A) Dice coefficient (DICE) comparison 
between DeepParcellation and FastSurfer. Using FreeSurfer output as surrogate for the 
ground truth, FastSurfer DICEs were baselines for calculating fold changes. Cohen’s d 
values were calculated using mean DICEs in two aspects (age and ethnicity). The 
horizontal line defines a Cohen’s d of 0.8, representing a large effect size. (B) Surface 
construction of parcellated brain images from representative subjects of different 
datasets. Red and blue squares indicate brains of Asians and Caucasians, respectively. 
(C) Examples of better parcellation with DeepParcellation compared with FreeSurfer. 
(a) Failures of right cortical parcellation in FreeSurfer (yellow arrows). (b) Wrong 
parcellation of right precentral and postcentral gyri in FreeSurfer (yellow dashed circle). 
 
Fig. 3. Evaluation of DeepParcellation. (A) Similarity evaluation among various age 
and ethnicity groups. (a) Dice coefficient (DICE) comparison. (b) aHD comparison 
between groups. Brains of older Asian individuals showed significantly higher DICE 
values compared with brains of young Asian individuals and older Caucasian 
individuals. Brains of older Asian individuals also showed significantly higher averaged 
Hausdorff Distance values compared with brains of young Asian individuals. (B) Intra-
subject reliability evaluation between DeepParcellation and FreeSurfer across 
ethnicities. DeepParcellation showed a significantly higher intra-class correlation 
coefficient than FreeSurfer in brains of Asians. (C) Between-group variability 
evaluation using Cohen’s ds between DeepParcellation and FreeSurfer across 
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parcellated regions of interest. The red dashed line indicates a Cohen’s d of 0.8 (large 
effect size). 
n.s. not significant; * significant at p < 0.05; ** significant at p < 0.01; *** significant at 
p < 0.001. 
 

Fig. 4. Robust dissociation of different diagnosed groups in DeepParcellation. Mean 
of normalized cortical volume with DeepParcellation (X) and FreeSurfer (O) in selected 
highly-ranked regions sorted by the difference in the negative logarithm of p-values 
between the cognitive normal (CN) and Alzheimer’s disease (AD) groups. 
DeepParcellation showed higher significance of normalized cortical volume differences 
than did FreeSurfer in regions highly associated with AD. 
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Tables 
Table 1. Characteristics of study samples. The distribution of age, sex, and sample size are 
described. 

Dataset No. of Subjects Age Male (%) Female (%) 

GARD 5035 (Sex unspecified: 51) 35 - 100 (72.62±0.15) 40.62 58.37 

SALD 487 (Sex unspecified: 2) 19 - 80 (45.31±1.55) 36.76 62.83 

TFU 140 18 - 22 (19.05±0.14) 60.00 40.00 

ADNI 956 55 - 97 (74.25±0.46) 50.21 49.79 

OASIS 1579 18 - 98 (68.34±0.68) 42.62 57.38 

 
Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; GARD, Gwangju 
Alzheimer’s & Related Dementia; OASIS, Open Access Series of Imaging Studies; 
SALD, Southwest University Adult Lifespan Dataset; TFU, Tohoku Fukushi University  
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Table 2. Processing success rate of DeepParcellation and Freesurfer showing absolute 
numbers and percentage. 

Dataset Module Count Total Success Rate (%) 

ADNI DeepParcellation 4500 4502 99.96 

ADNI FreeSurfer 4461 4502 99.09 

OASIS DeepParcellation 5162 5162 100.00 

OASIS FreeSurfer 4889 5162 94.71 

GARD DeepParcellation 7337 7337 100.00 

GARD FreeSurfer 7337 7337 100.00 

SALD DeepParcellation 494 494 100.00 

SALD FreeSurfer 487 494 98.58 

TFU DeepParcellation 153 153 100.00 

TFU FreeSurfer 152 153 99.35 

 
Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; GARD, Gwangju 
Alzheimer’s & Related Dementia; OASIS, Open Access Series of Imaging Studies; 
SALD, Southwest University Adult Lifespan Dataset; TFU, Tohoku Fukushi University 
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